

Fertility Preservation in South Africa

Dr Chris Venter Reproductive Medicine Specialist

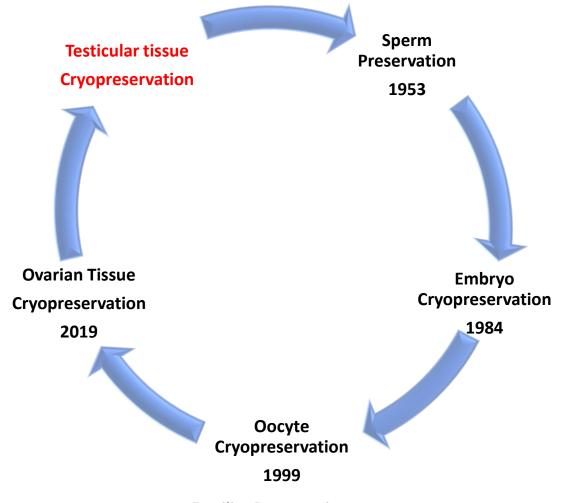
From a National Strategy to Clinical practice

"we should remember that good fortune often happens when opportunity meets with preparation"

Thomas A Edison

Why Fertility Preservation?

- Advancement in therapeutics and earlier detection of cancer has led to a 90 % survival rate in people with cancer in their reproductive years.
- Childhood cancer survivors increased from 10 to 90%.
- New advancements in vitrification technologies has improved the success rates of stored gametes.
- ASCO and ESMO, Committee Guidelines stipulate should be standard practice.
- Good evidence that fertility preservation gives hope, improves survivorship.
- Alternatives: Accept, egg donation, surrogacy or adopt.



Evolution of cryo-preservation

Partners Network



Data

ANARA Registry

From 2018 includes FP

From 2021 includes extended FP: Male, Female (OTC, Oocytes, Embryo)

South African Cancer Registry

Female Cancers: 12-40 Yr

2018

HOME » CENTRES » NATIONAL CANCER REGISTRY

South African Cancer Registry

Female (12-40yrs) - 2018	Nr
Bone	54
Brain, CNS	49
Breast	1258
Cervical	1494
Colorectal	161
Hodgkin lymphoma	152
Leukaemia	51
Melanoma	166
Non Hodgkin lymphoma	287
Ovary	84
Total	5278

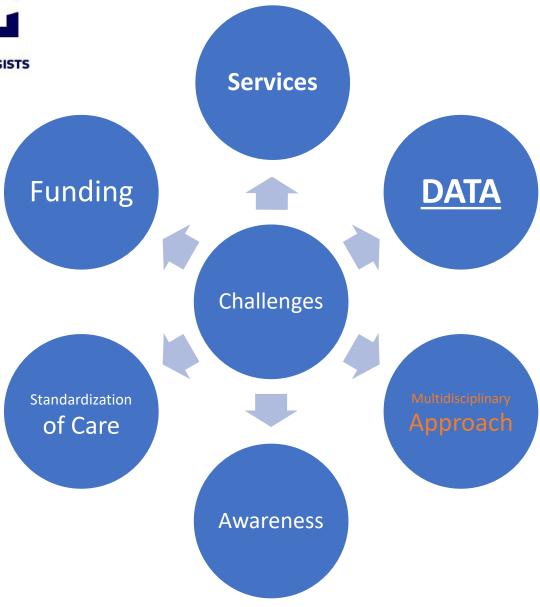
ANARA Registry

2018 FP procedures

Only included Oocytes preservation

Cancer: 54

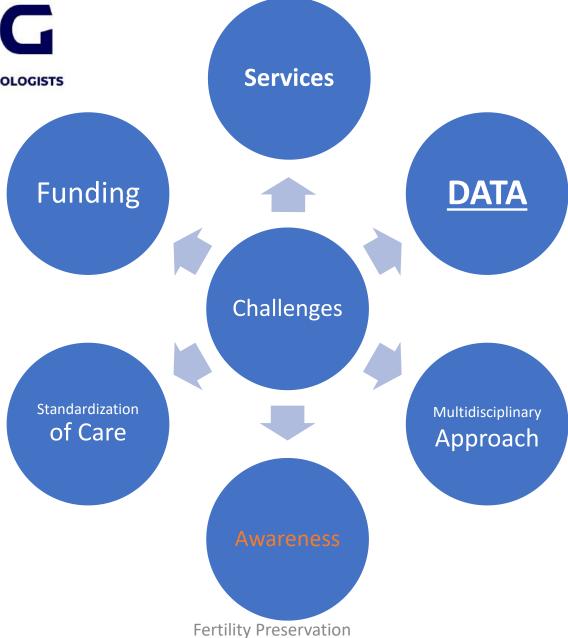
Risk of POI: 28

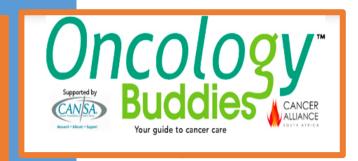

Social: 107

Total: 189

1 % All Cancer patients receives FP

Multi - Disciplinary
Approach





SIG Oncology Navigators

Fertility Preservation

Standardization of Care

ZIMBABWE SOCIETY OF OBSTETRICIANS & GYNAECOLOGISTS

• 3 are Required Operational Practice (ROP)

DEPARTMENT: Clinical Services		TMENT: Clinical Services	Section: Oncofertility
D.	2.	Standard Name: Qualifications & Staff Structure: Oncofertility knowledge.	ROP: Yes

Standard Statement / Goal:

The fertility specialist must understand the basic principles in fertility preservation specifically related to cancer diagnoses.

DEPARTMENT: Clinical Services		Section: Oncofertility
D.3.	Standard Name: Processes & Procedures: Cryopreservation competency.	ROP: Yes

Standard Statement / Goal:

The procedure of cryopreservation is an essential step in the preservation of a patient's fertility potential.

Intent:

Optimization of future clinical outcomes. Competency in cryopreservation techniques is essential to optimize the chances of achieving a future live birth.

DEPARTMENT: Clinical Services		Section: Oncofertility
D.7.	Standard Name: Information, Communication & Feedback: Informed consent.	ROP: Yes

Standard Statement / Goal:

Consent forms are essential in all Oncofertility procedures and the storage of specimens.

FUNDING

Currently out of pocket: reduced fees

15 % population on private health care

85 % in public: fertility care not easily accessible

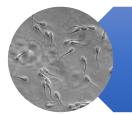
Major Health Care Funder: 2022

Based on following principles:

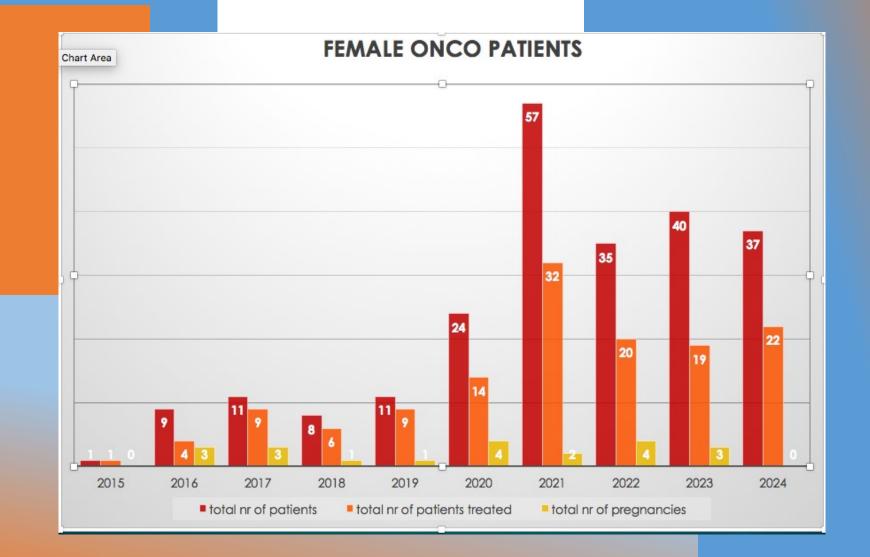
- Need accreditation process Quality Control
- Need to have accurate data

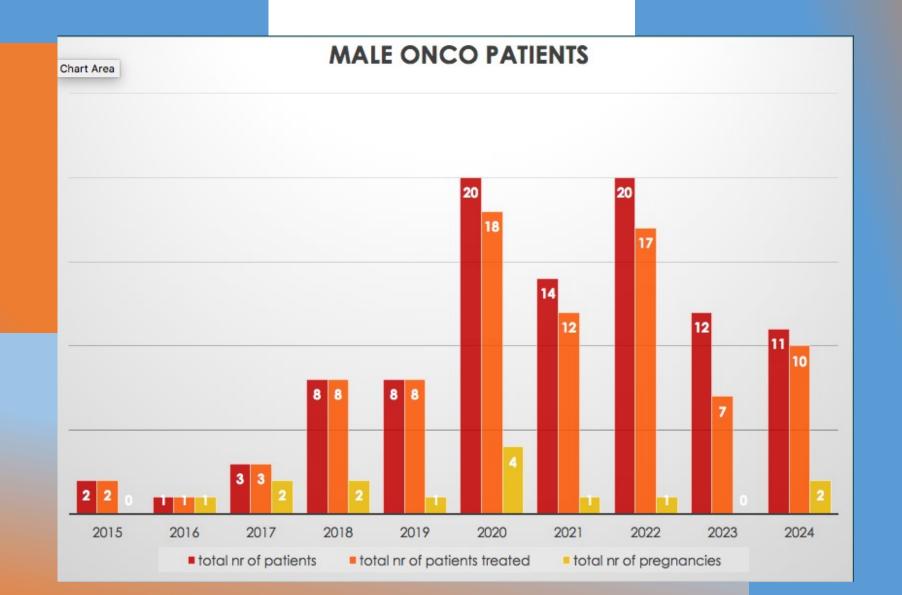
Others will follow?

Case Studies

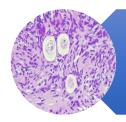

27 yr old female estrogen Positive Breast Cancer

32 yr old Female with Idiopathic Diminished Ovarian reserve

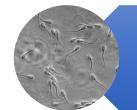




27 yr old Male with Testicular Cancer



27 yr old female estrogen Positive Breast Cancer



32 yr old Female with Idiopathic Diminished Ovarian reserve

8 yr old Female with Acute Lymphoblastic leukemia

27 yr old Male with Testicular Cancer

Case study 1

- 36 yr old P1G1
- Referred from Oncologist with Stage 3C
- ESTROGEN Positive Breast cancer
- Treatment proposed

Bilateral mastectomy and node dissection

Adjuvant Chemotherapy

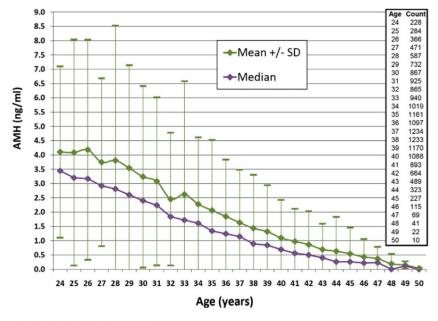
Current fertility status

Gonadotoxic risk of Chemo regime

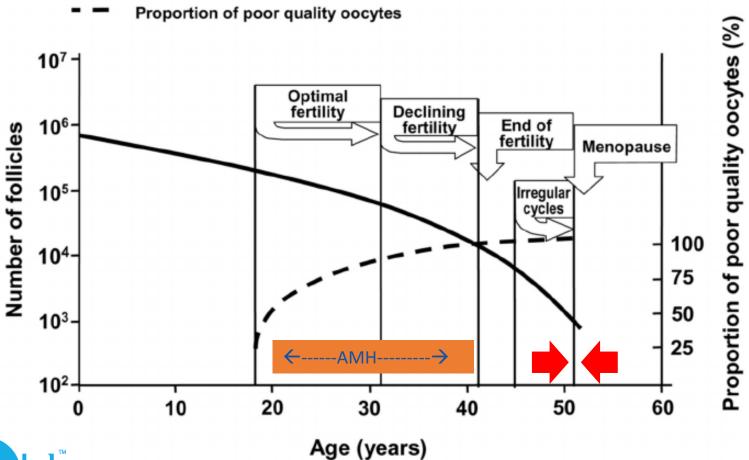
Risk of Cancer treatment to Fertility

Risk Fertility preservation to disease progression

Financial Burden



- AMH (anti mullerian hormone)
- Antral Follicle Count

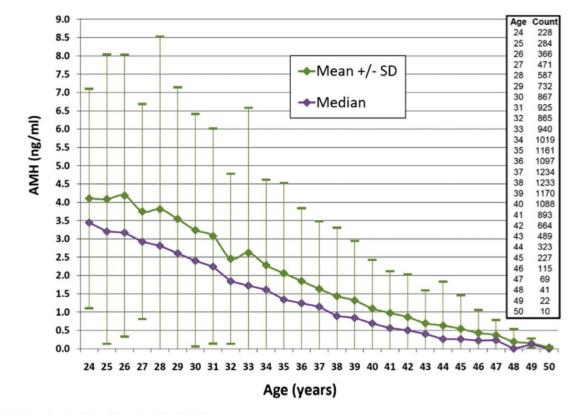

Seifer. Age-specific AMH values for U.S. clinics. Fertil Steril 2011.

New Biomarkers

Number of follicles

AMH

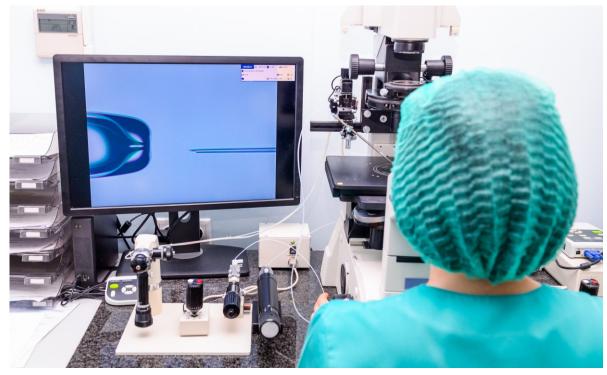
- Poor predictor of shortterm chance to conceive
- Good predictor of the age of menopause
- Good predictor of reproductive lifespan



Current fertility reserve

AMH = 0.8

Antral Follicle Count = 5



Seifer. Age-specific AMH values for U.S. clinics. Fertil Steril 2011.

Current fertility status

Gonadotoxic risk of Chemo regime

Risk of Cancer treatment to Fertility

Risk Fertility preservation to disease progression

Financial Burden

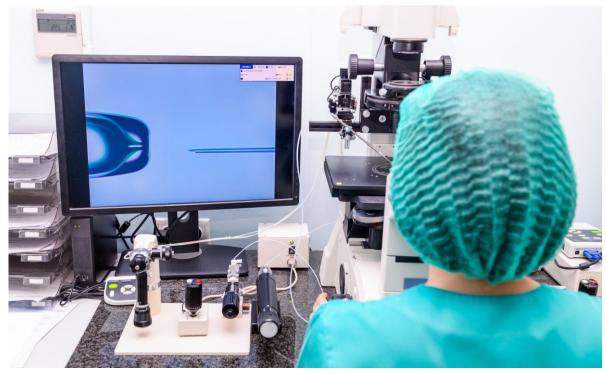
Gonadotoxic risk of Chemo regime

SPECIAL ARTICLE

Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines[†]

M. Lambertini^{1,2}, F. A. Peccatori³, I. Demeestere⁴, F. Amant^{5,6}, C. Wyns⁷, J.-B. Stukenborg⁸, S. Paluch-Shimon⁹, M. J. Halaska¹⁰, C. Uzan¹¹, J. Meissner¹², M. von Wolff¹³, R. A. Anderson¹⁴ & K. Jordan¹², on behalf of the ESMO Guidelines Committee^{*}

nnals of Oncology M. Lambertini et al.


Degree of risk	Treatment type/regimen	Comments
High risk (>80%)	Haematopoietic stem cell transplantation (especially alkylating agent-based myeloablative conditioning with cyclophosphamide, busulfan, melphalan or total body RT)	
	EBRT >6 Gy to a field including the ovaries	
	6 cycles of CMF, CEF, CAF or TAC in women of \geq 40 years	Significant decline in AMH levels after treatment Early menopause
	6-8 cycles of escalated BEACOPP in women of ≥30 years	Significant decline in AMH levels after treatment
Intermediate risk (20%-80%)	6 cycles of CMF, CEF, CAF or TAC in women of 30–39 years	Significant decline in AMH levels after treatment Early menopause
	4 cycles of AC in women of ≥40 years	Significant decline in AMH levels after treatment
	4 cycles of AC/EC → taxane	Significant decline in AMH levels after treatment
	4 cycles of dd (F)EC → dd taxane	
	6-8 cycles of escalated BEACOPP in women of <30 years	Significant decline in AMH levels after treatment
	6 cycles of CHOP in women of ≥35 years	Early menopause
	6 cycles of DA-EPOCH in women of ≥35 years	Significant decline in AMH levels after treatment
	FOLFOX in women of ≥40 years	
Low risk (<20%)	6 cycles of CMF, CEF, CAF or TAC in women of <30 years	Significant decline in AMH levels after treatment Early menopause
	4 cycles of AC in women of <40 years	Significant decline in AMH levels after treatment
	2 cycles of escalated BEACOPP	Significant decline in AMH levels after treatment
	ABVD	Insignificant decline in AMH levels after treatmen
	6 cycles of CHOP in women of <35 years	Early menopause
	6 cycles of DA-EPOCH in women of <35 years	Significant decline in AMH levels after treatment
	AML therapy (anthracycline/cytarabine)	Insignificant decline in AMH levels after treatmen
	ALL therapy (multi-agent)	Insignificant decline in AMH levels after treatmen
	Multi-agent ChT for osteosarcoma (doxorubicin, cisplatin, methotrexate, ifosfamide) in women of <35 years	
	Multi-agent ChT for Ewing's sarcoma (doxorubicin, vincristine, dactinomycin, cyclophosphamide, ifosfamide, etoposide) in women of <35 years	
	FOLFOX in women of <40 years	
	Antimetabolites and vinca alkaloids	
	BEP or EP in women of <30 years	
	Radioactive iodine (I-131)	Decline in AMH levels after treatment
	Bevacizumab	
Unknown risk	Platinum- and taxane-based ChT	
	Most targeted therapies (including monoclonal antibodies and small molecules)	
	Immunotherapy	

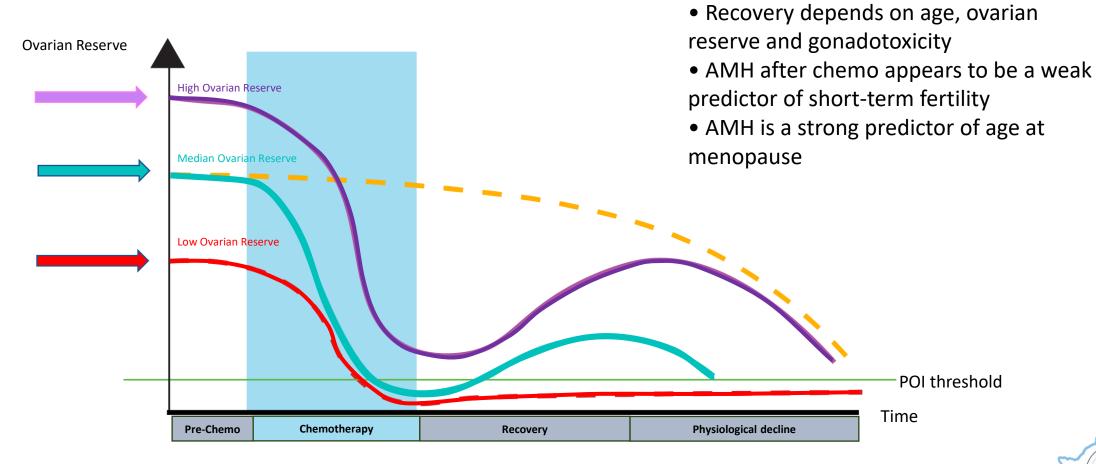
ABVD, doxorubicin, bleomycin, vinblastine, dacarbazine; AC, doxorubicin, cyclophosphamide; ALL, acute lymphoid leukaemia; AMH, anti-Müllerian hormone; AML, acute myeloid leukaemia; BEACOPP, bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, prednisone, procarbazine; BEP, bleomycin, etoposide, cisplatin; CAF, cyclophosphamide, doxorubicin, vincristine, prednisone; ChT, chemotherapy; CMF, cyclophosphamide, doxorubicin, vincristine, prednisone; ChT, chemotherapy; CMF, cyclophosphamide, methotrexate, 5-fluorouracil; DA-EPOCH; dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; dd, dose dense; EBRT, external beam radiotherapy; EC, epirubicin, cyclophosphamide; EP, etoposide, cisplatin; F, fluorouracil; FOLFOX, folinic acid, 5-fluorouracil, oxaliplatin; Gy, Gray; RT, radiotherapy; TAC, docetaxel, doxorubicin, cyclophosphamide.

^a Adapted from Lee et al. ¹⁰ Table contains examples and is not a complete list.

Current fertility status

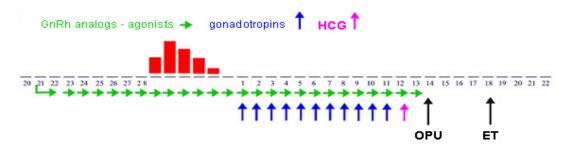
Gonadotoxic risk of Chemo regime

Risk of Cancer treatment to Fertility


Risk Fertility preservation to disease progression

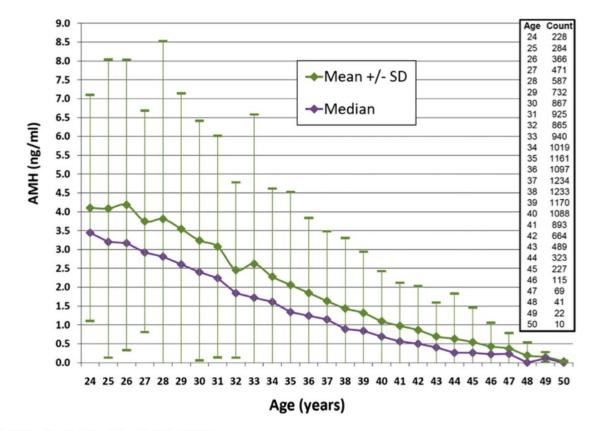
Financial Burden

Infertility related to follicle depletion in cancer patients



Case study 1 Management

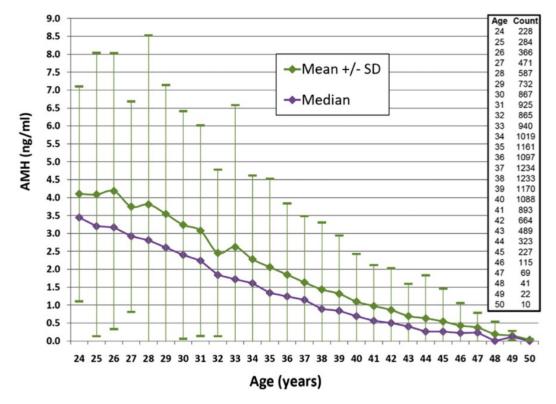
Random start stimulation


- Reproductive Outcome:
 - 15 met II oocytes, 9 fert , 2 X Blastocysts
 - Trophectoderm Biopsy
 - 2/2 euploid
 - Potential to test for BRCA-gene mutation

Post chemo

- 3 YEARS LATER
- AMH= <0,01
- FSH =20

Seifer. Age-specific AMH values for U.S. clinics. Fertil Steril 2011.



Case study 2

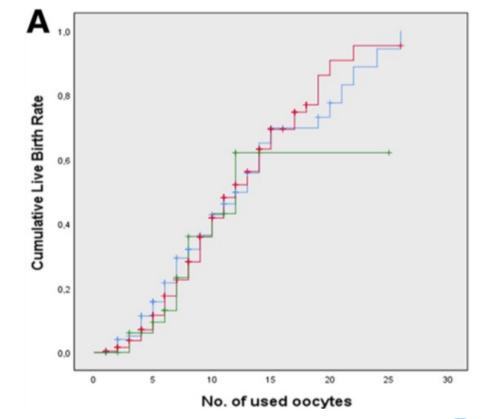
- 34 yr old single female present for a fertility check
- Considering Elective egg freezing
- AFC = 3+2 : AMH = 0,7
- No risk factors for DOR.
- Premature Ovarian aging
- Strongly Recommended ->
- Oocyte Cryopreservation

Seifer. Age-specific AMH values for U.S. clinics. Fertil Steril 2011.

What are the quality of my oocytes?

AND

How many oocytes do I need?



Quality of my oocytes?

- Determined by age and Number of oocytes.
 - Cobo et al. Fertility and Sterility 2021
- Younger than 35 Yrs
- Confounding factors
 - Cancer
 - Endometriosis

Oocyte vitrification for fertility preservation for both medical and nonmedical reasons

Ana Cobo, Ph.D., a Juan Antonio García-Velasco, M.D., José Remohí, M.D., and Antonio Pellicer, M.D. a IVIRMA Valencia, Valencia, Spain, and IVIRMA Madrid and Universidad Rey Juan Carlos, Madrid, Spain

*Fertility and Sterility® Vol. 115, No. 5, May 2021

Cumulative Live Birth rate and nr of embryos Younger than 35 yrs

EF	FP	
n =	123	
No. of oocytes	CLBR (95% CI)	
3 5 8 10 15 20 24	5.1 (0.7–9.4) 15.8 (8.4–23.1) 32.0 (22.1–41.9) 42.8 (31.7–53.9) 69.8 (57.4–82.2) 77.6 (64.4–90.9) 94.4 (84.3–100.4)	4

Cumulative Live Birth rate and nr of embryos Younger than 35 yrs

	EFP	
r	n = 123	
No. of oocytes	CLBR (95% CI)	
3 5 8 10 15 20 24	5.1 (0.7–9.4) 15.8 (8.4–23.1) 32.0 (22.1–41.9) 42.8 (31.7–53.9) 69.8 (57.4–82.2) 77.6 (64.4–90.9) 94.4 (84.3–100.4)	6

Cumulative Live Birth rate and nr of embryos Younger than 35 yrs

	EFP	
	n = 123	
No. of oocytes	CLBR (95% CI)	
3 5 8 10 15 20 24	5.1 (0.7–9.4) 15.8 (8.4–23.1) 32.0 (22.1–41.9) 42.8 (31.7–53.9) 69.8 (57.4–82.2) 77.6 (64.4–90.9) 94.4 (84.3–100.4)	18

ZSOG

Case study 2 outcome

- 39 yr
- Husband: normal semen analysis
- AMH= 0,03
- Irregular menstrual cycles
- ICSI: 18 oocytes → Fertilized → 4x day 5
 blastocyst → 2 blast transferred → 2 PGT-a
- Conceived → singleton pregnancy → Delivered a healthy boy

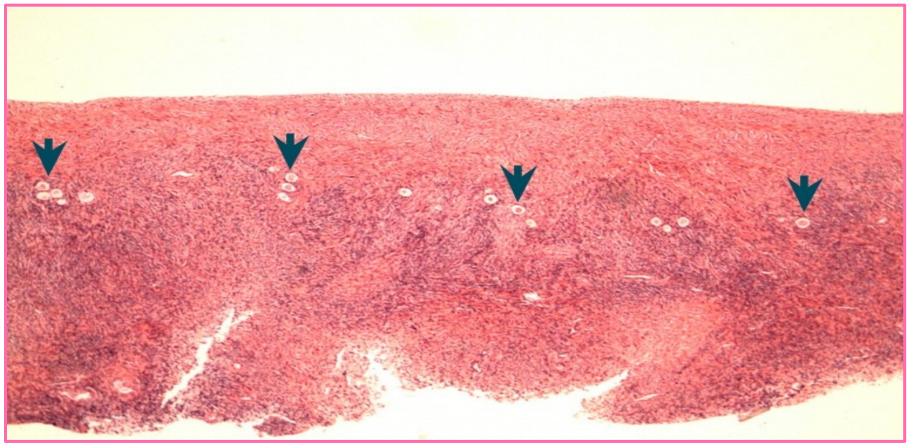
Case study 3

- 8 yr old female
- Referred from Oncologist with Acute Lymphoblastic Leukemia
- She had Induction chemo
- Now in remission
- Work up for Miëlo-ablative Chemo
- Very High Risk for becoming Sterile

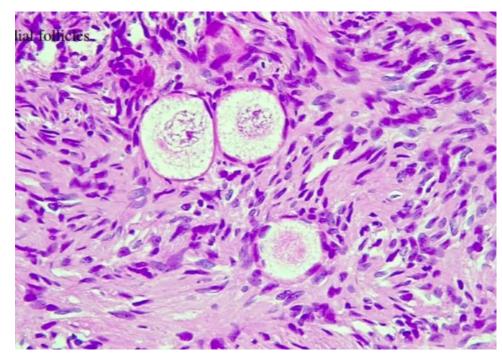
Ovarian Tissue Cryopreservation

- Indicated in cancers where there NO time in delaying chemotherapy (ALL)
- Can be performed immediately without delaying start of oncology treatment
- Only proven fertility preservation option in prepubertal females

However

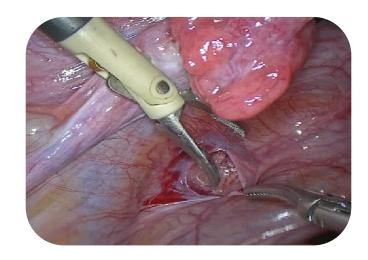

- Could potentially re-transplant cancer cells.
- Still regarded as EXPERIMENTAL in South Africa and the US and if patients do opt for this option it should done under full consent stating the experimental nature of this procedure

Ovarian Cortex

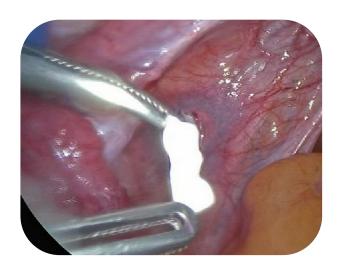


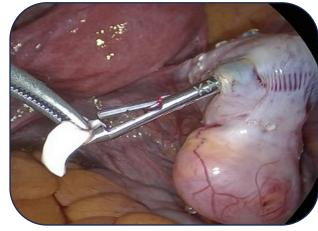
Ovarian Tissue Cryopreservation

75 PRIMORDIAL FOLLICLES PER HPF

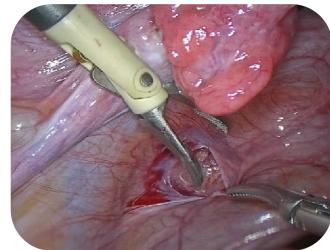


- One ovary dissected
- 14 ovarian strips





Orthotopic Autologous Re-implantation of ovarian Tissue



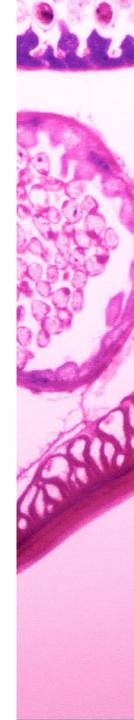
Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study

Cesar Diaz-Garcia, M.D., ^{a,b,c} Javier Domingo, M.D., ^d Juan Antonio Garcia-Velasco, M.D., ^{e,f} Sonia Herraiz, Ph.D., ^{b,g} Vicente Mirabet, Ph.D., ^h Ignacio Iniesta, B.Sc., ^b Ana Cobo, Ph.D., ⁱ José Remohí, M.D., ^{c,i} and Antonio Pellicer, M.D. ^{b,c,j}

- Period 2005-2015
- 1025 OV vs 800 OTC
- Age 31,7 vs 28,2; Mean 5yrs before utilization, 7 % of patients.
- OV= 49 pt 40,8 % PR: OTC= 44 pt 33% of which 15 % achieved a spontaneous pregnancy.

Conclusion

Both methods effective in fertility preservation.


Case study 4

27 yr old male

Self Referral;

Orchidectomy as a newborn due to embryological tumor

Now booked for Orchidectomy for a **Right Testicular Germ Cell tumor**

ZSOG

Case study 4 Management

- Bi-valve of the testis
- Occasional twitching and motile sperm observed
- 5 per HPF
- 5 vails stored

Case study 4 Management

- Following Year Married ICSI
- 35 Oocyte retrieved
- 9 Embryos
- 5/9 Euploid
- Transfer in 2025

Conclude

The Three arms of Oncofertility are:

- Multidisciplinary team approach
 Cases are usually complex, and each case should be seen on its own merit
- Altruism
- Inclusivity
- Reproductive vitrification techniques has evolved and is effective
- We should actively counsel patients at risk
- There is still no guarantees to live birth, and that fertility preservation should be seen as an insurance to boost a patient's chances in achieving a biological child.

THANK YOU

Dr Chris Venter

